Further Vectors II Cheat Sheet

Vector Product (A level Only)

The dot product of two vectors produces a scalar quantity. There is another way to 'multiply' vectors which gives a third vector. It is known as the vector or cross product. It is written as $a \times b$.

The vector product has the following properties:

- $|\boldsymbol{a} \times \boldsymbol{b}| = |\boldsymbol{a}||\boldsymbol{b}|\sin\theta$
- $\pmb{a} imes \pmb{b}$ is perpendicular to both \pmb{a} and \pmb{b} la h

In component form:
$$\boldsymbol{a} \times \boldsymbol{b} = \begin{pmatrix} a_y b_z - b_y a_z \\ a_z b_x - b_z a_z \\ a_x b_y - b_x a_z \end{pmatrix}$$

Since $|a \times b| = |a||b| \sin \theta$, the area of a triangle with two sides **a** and **b** can be calculated using the cross product:

If **a** and **b** are parallel, then $\mathbf{a} \times \mathbf{b} = 0$, this follows from noting that if they are parallel then $\theta = 0$ so $\sin\theta = 0.$

 $A = \frac{1}{2} |\boldsymbol{a} \times \boldsymbol{b}|$

This makes the vector product useful for writing the equation of a straight line:

 $(r-a)\times b=0,$

Here, **a** is a point on the line and **b** is a vector parallel to the line. r - a is parallel to **b** for points which are on the line, hence the cross product is zero.

Example 1: A triangle is formed by the origin, (1,2,6) and (3,4,5). Find the area of the triangle.

Begin by calculating the vectors of two sides of this triangle. Since one of the points is the origin, the vectors for the two other points are the position vectors.	$\boldsymbol{a} = \begin{pmatrix} 1\\2\\6 \end{pmatrix}, \boldsymbol{b} = \begin{pmatrix} 3\\4\\5 \end{pmatrix}$
The cross product can now be calculated, and the modulus can be taken.	$a \times b = \begin{pmatrix} 10 - 24 \\ 18 - 5 \\ 4 - 6 \end{pmatrix} = \begin{pmatrix} -14 \\ 13 \\ -2 \end{pmatrix}$ $\Rightarrow a \times b = \sqrt{(-14)^2 + 13^2 + (-2)^2} = \sqrt{369}$
Now, the formula above can be used to find the area.	$\frac{1}{2}\sqrt{369}$

Geometry of Lines

Given two lines in 3D: $r_1 = a_1 + \lambda b_1$, $r_2 = a_2 + \mu b_2$, they intersect if there is a point for which $r_1 = r_2$. Otherwise, they are either parallel or skew. If b_1 and b_2 are parallel, then the lines must also be

Example 2: The line
$$\ell_1$$
 is given by the equation $\mathbf{r}_1 = \begin{pmatrix} 0\\1\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\0\\1 \end{pmatrix}$ and the line ℓ_2 is given by $\mathbf{r}_2 = \begin{pmatrix} 1\\1\\2 \end{pmatrix} + \mu \begin{pmatrix} 2\\3\\1 \end{pmatrix}$, where λ and μ are free parameters, do they intersect?

The problem is set up by setting $r_1 = r_2$. This gives 3 simultaneous equations with two unknowns	$0 + \lambda = 1 + 2\mu(1)$ $1 = 1 + 3\mu(2)$
sindlancous equations with two unknowns.	$\lambda = 2 + \mu (3)$
From (2) that, $\mu = 0$ can be used to find the value of λ in (1) and (3). Since we find a contradiction, there is no solution, meaning that the lines do not intersect.	$\begin{array}{l} (2) \Longrightarrow \mu = 0 \\ \Longrightarrow \lambda = 2 \text{ using (3), but } \lambda = 1 \text{ using} \\ (1). \\ \Longrightarrow \text{ No intersection.} \end{array}$

Shortest Distance from a Point to a Line

Given a line ℓ and a point A, the shortest distance between A and ℓ can be found. First, B, the point on ℓ which is closest to A, is found by noting that the vector **AB** must be perpendicular to ℓ . Having found B, the distance can be found as the modulus of AB.

 $+\lambda(4)$, where λ is a free parameter, what is the **Example 3:** The line ℓ is given by $r_1 = (1)$ shortest distance from ℓ to the point *P*, (-1,1,0)?

Shortest Distance Between Two Lines

The shortest distance between two lines is found using a similar idea. The shortest possible vector from one line to the other must be perpendicular to both lines. The points A and B are found by using this fact to set up simultaneous equations.

If the two lines are parallel, then the distance between them can be found more easily by choosing A arbitrarily then finding the shortest distance from A to the line.

Example 4: The line ℓ_1 is given by the equation $\mathbf{r}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and the line ℓ_2 is given by

3 , where λ and μ are free parameters, what is the shortest distance from $r_{2} =$ ℓ_1 to ℓ_2 ?

The vector from
$$\ell_1$$
 to ℓ_2 can be
found as $r_1 - r_2$. $\begin{pmatrix} 0\\1\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\0\\1 \end{pmatrix} - \begin{pmatrix} 1\\1\\2 \end{pmatrix} - \mu \begin{pmatrix} 2\\3\\1 \end{pmatrix} = \begin{pmatrix} -1 + \lambda - 2\mu\\-3\mu\\-2 + \lambda - \mu \end{pmatrix}$ When this vector is shortest it is
perpendicular to $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ and $\begin{pmatrix} 2\\3\\1 \end{pmatrix}$. $\begin{pmatrix} -1 + \lambda - 2\mu\\-3\mu\\-2 + \lambda - \mu \end{pmatrix} \cdot \begin{pmatrix} 1\\0\\1 \end{pmatrix} = 0 \Rightarrow -3 + 2\lambda - 3\mu = 0$
 $\begin{pmatrix} -1 + \lambda - 2\mu\\-3\mu\\-2 + \lambda - \mu \end{pmatrix} \cdot \begin{pmatrix} 2\\3\\1 \end{pmatrix} = 0 \Rightarrow -4 + 3\lambda - 14\mu = 0$ The simultaneous equations can be
solved to give the values of λ and μ
which give the shortest vector $r_1 - r_2$. $-3 + 2\lambda - 3\mu = 0 \Rightarrow \mu = -1 + \frac{2}{3}\lambda$
 $\Rightarrow -4 + 3\lambda - 14\left(1 + \frac{2}{3}\lambda\right) = 0 = -18 - \frac{19}{3}\lambda$
 $\Rightarrow \lambda = -\frac{54}{19}, \mu = -\frac{55}{19}$ The modulus of $r_1 - r_2$ with these
values of λ and μ is the answer. $\int \left(-1 - \frac{54}{19} + \frac{110}{19}\right)^2 + \left(\frac{165}{19}\right)^2 + \left(-2 - \frac{54}{19} + \frac{55}{19}\right)^2 = \sqrt{83}$

⊘∖⊘

R

А

AB

В

A

AB

In 3D, a plane and a line will always intersect at a point unless the line is parallel to the plane. The point of intersection can be found most easily using the cartesian equation for the plane

Example 5: The line ℓ is given

point do they intersect?

coordinates of points on the line into the equation for the plane. intersection

Shortest Distance from a Point to a Plane

The shortest distance from a point *A*, to a plane, π , is most gives the amount of **a** in the direction of **n**. Since this is perpendicular to the plane, it must be the shortest distance

Example 6: a.) The plane π is given by the equation r =

```
This can be done quickly using the vector product.
```

|n|

A vector \boldsymbol{a} from π to the point is needed. The point at 1 is clearly on π so we can use this to find a.

Now projecting a onto \hat{n} gives the shortest distance from P to π .

b.) This part is most quickly solved with the cartesian the point (4), the cartesian equation for π is found.

the same method as in example 5 can be used.

The expressions for x, y and z are substituted into the cartesian equation for π .

point of intersection.

AQA A Level Further Maths: Core

Geometry of Planes (A Level Only) Intersection of a Line and a Plane

n by
$$\mathbf{r} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$$
, the plane π is given by $x + 2y + z = 10$. At what

