Further Vectors II Cheat Sheet

Vector Product (A level Only)

The dot product of two vectors produces a scalar quantity. There is another way to 'multiply' vector which gives a third vector. It is known as the vector or cross product. It is written as $\boldsymbol{a} \times \boldsymbol{b}$.

The vector product has the following properties

> - $\quad|\boldsymbol{a} \times \boldsymbol{b}|=|\boldsymbol{a}||\boldsymbol{b}| \sin \theta$
> - $\quad \boldsymbol{a} \times \boldsymbol{b}$ is perpendicular to both \boldsymbol{a} and \boldsymbol{b}
> - \quad In component form: $\boldsymbol{a} \times \boldsymbol{b}=\left(\begin{array}{l}a_{y} b_{z}-b_{y} a_{z} \\ a_{z} b_{x}-b_{z} a_{x} \\ a_{x} b_{y}-b_{x} a_{y}\end{array}\right)$

Since $|\boldsymbol{a} \times \boldsymbol{b}|=|\boldsymbol{a}||\boldsymbol{b}| \sin \theta$, the area of a triangle with two sides \boldsymbol{a} and \boldsymbol{b} can b calculated using the cross product

$$
A=\frac{1}{2}|\boldsymbol{a} \times \boldsymbol{b}|
$$

$a \times b$

If \boldsymbol{a} and \boldsymbol{b} are parallel, then $\boldsymbol{a} \times \boldsymbol{b}=0$, this follows from noting that if they are parallel then $\theta=0$ so
$\sin \theta=0$. $\sin \theta=0$.
This makes the vector product useful for writing the equation of a straight line:
$(r-a) \times b=0$,
Here, \boldsymbol{a} is a point on the line and \boldsymbol{b} is a vector paralle to the line. $\boldsymbol{r}-\boldsymbol{a}$ is parallel to \boldsymbol{b} for points which are on the line, hence the cross product is zero.

Example 1: A triangle is formed by the origin, $(1,2,6)$ and $(3,4,5)$. Find the area of the triangle.

Begin by calculating the vectors of two sides of this triangle. Since one of the points is the origin, the vectors for the two other points are the position vectors.	$a=\left(\begin{array}{l} 1 \\ 2 \\ 6 \end{array}\right), b=\left(\begin{array}{l} 3 \\ 4 \\ 5 \end{array}\right)$
The cross product can now be calculated, and the modulus can be taken.	$\begin{gathered} \boldsymbol{a} \times \boldsymbol{b}=\left(\begin{array}{c} 10-24 \\ 18-5 \\ 4-6 \end{array}\right)=\left(\begin{array}{c} -14 \\ 13 \\ -2 \end{array}\right) \\ \Rightarrow\|\boldsymbol{a} \times \boldsymbol{b}\|=\sqrt{(-14)^{2}+13^{2}+(-2)^{2}}=\sqrt{369} \end{gathered}$
Now, the formula above can be used to find the area.	$\frac{1}{2} \sqrt{369}$

Geometry of Lines

Given two lines in 3D: $\boldsymbol{r}_{1}=\boldsymbol{a}_{1}+\lambda \boldsymbol{b}_{1}, \boldsymbol{r}_{2}=\boldsymbol{a}_{2}+\mu \boldsymbol{b}_{2}$, they intersect if there is a point for which $\boldsymbol{r}_{1}=\boldsymbol{r}_{2}$. Otherwise, they are either parallel or skew. If \boldsymbol{b}_{1} and \boldsymbol{b}_{2} are parallel, then the lines must also be.
Example 2: The line ℓ_{1} is given by the equation $r_{1}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and the line ℓ_{2} is given by
$r_{2}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)+\mu\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$, where λ and μ are free parameters, do they intersect?

The problem is set up by setting $r_{1}=r_{2}$. This give simultaneous equations with two unknowns.	$\begin{aligned} +\lambda & =1+2 \mu(1) \\ 1 & =1+3 \mu(2) \\ \lambda & =2+\mu \quad(3) \end{aligned}$
From (2) that, $\mu=0$ can be used to find the value of λ in (1) and (3). Since we find a contradiction, there is no solution, meaning that the lines do not intersect.	$\begin{gathered} \text { (2) } \Rightarrow \mu=0 \\ \Rightarrow \lambda=2 \text { using (3), but } \lambda=1 \\ \text { (1). } \\ \Rightarrow \text { No intersection. } \end{gathered}$

Shortest Distance from a Point to a Line

Given a line ℓ and a point A, the shortest distance etween A and ℓ can be found. First, B, the point on ℓ which is closest to A, is found by noting that the vecto
$A B$ must be perpendicular to ℓ. Having found B, the distance can be found as the modulus of $A B$.

Example 3: The line ℓ is given by $\boldsymbol{r}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 4 \\ 0\end{array}\right)$, where λ is a free parameter, what is the
shortest distance from ℓ to the point $P(-1,1,0)$?

The vector from the point to the line can be written down immediately.	$\left(\begin{array}{c}-1-(1+\lambda) \\ 1-(1+4 \lambda) \\ 0-3\end{array}\right)=\left(\begin{array}{c}-2-\lambda \lambda \\ -4 \lambda \\ -3\end{array}\right)$
When this vector is shortest it is perpendicular	$\left(\begin{array}{c}1 \\ 4 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}-2-\lambda \lambda \\ -4 \lambda \\ -3\end{array}\right)=0$
to $\binom{1}{4}$ so the dot product is zero.	$-2-\lambda-17 \lambda=0$

Shortest Distance Between Two Lines

The shortest distance between two lines is found using a similar idea. The shortest possible vector from one
line to the other must be perpendicular to both lines The points A and B are found by using this fact to set up simultaneous equations.
 them can he found paralle, then the distance between them can be found more easily by choosing A arbitrarily

Example 4: The line ℓ_{1} is given by the equation $\boldsymbol{r}_{1}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and the line ℓ_{2} is given by
$\boldsymbol{r}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)+\mu\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$,
ℓ_{1} to ℓ_{2} ?

The vector from ℓ_{1} to ℓ_{2} can be found as $\boldsymbol{r}_{1}-\boldsymbol{r}_{2}$.	$\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)-\mu\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)=\left(\begin{array}{c}-1+\lambda-2 \mu \\ -3 \mu \\ -2+\lambda-\mu\end{array}\right)$
When this vector is shortest it is perpendicular to $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$.	$\begin{aligned} & \left(\begin{array}{c} -1+\lambda-2 \mu \\ -3 \mu \\ -2+\lambda-\mu \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right)=0 \Rightarrow-3+2 \lambda-3 \mu=0 \\ & \left(\begin{array}{c} -1+\lambda-2 \mu \\ -2 \mu \\ -2+\lambda-\mu \end{array}\right) \cdot\left(\begin{array}{l} 2 \\ 3 \\ 1 \end{array}\right)=0 \Rightarrow-4+3 \lambda-14 \mu=0 \end{aligned}$
The simultaneous equations can be solved to give the values of λ and μ which give the shortest vector r_{1} r_{2}.	$\begin{gathered} -3+2 \lambda-3 \mu=0 \Rightarrow \mu=-1+\frac{2}{3} \lambda \\ \Rightarrow-4+3 \lambda-14\left(1+\frac{2}{3} \lambda\right)=0=-18-\frac{19}{3} \lambda \\ \Rightarrow \lambda=-\frac{54}{19}, \mu=-\frac{55}{19} \end{gathered}$
The modulus of $\boldsymbol{r}_{1}-\boldsymbol{r}_{2}$ with these values of λ and μ is the answer.	$\sqrt{\left(-1-\frac{54}{19}+\frac{110}{19}\right)^{2}+\left(\frac{165}{19}\right)^{2}+\left(-2-\frac{54}{19}+\frac{55}{19}\right)^{2}}=\sqrt{83}$

AQA A Level Further Maths: Core

Geometry of Planes (A Level Only)

tersection of a line and a Plan

n 3D, a plane and a line will always intersect at a point unless the line is parallel to the plane. The point of intersection can be found most easily using the cartesian equation for the plane.
Example 5: The line ℓ is given by $r=\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 4 \\ 1\end{array}\right)$, the plane π is given by $x+2 y+z=10$. At what point do they intersect?

$$
\begin{aligned}
& \text { Begin by substituting expressions for the } \\
& \text { coordinates of points on the line into the } \\
& \text { equatiof for the plane. } \\
& \text { Solving this gives the value of } \lambda \text { for the po } \\
& \text { intersection. }
\end{aligned}
$$

$$
\begin{gathered}
x=2 \lambda, y=2+4 \lambda, z=1+\lambda \\
\Rightarrow 2 \lambda+2+4 \lambda+1+\lambda=10 \\
\Rightarrow 7 \lambda+3=10 \\
\lambda=1 \\
\text { They intersect at }\left(\begin{array}{l}
2 \\
6 \\
2
\end{array}\right)
\end{gathered}
$$

Shortest Distance from a Point to a Plane

The shortest distance from a point A, to a plane, π, is most easily found by projecting (taking the scalar product) any vecto from A to π (labelled \boldsymbol{a}) onto the unit normal vector, $\widehat{\boldsymbol{n}}$. This gives the amount of \boldsymbol{a} in the direction of \boldsymbol{n}. Since this is perpendicular to the plane, it must be the shortest distance. free parameters. Find the shortest distance from the point $P(-1,2,-5)$ to π. b.) Given that $\left(\begin{array}{l}5 \\ 4 \\ 5\end{array}\right)$ is a point lying on π, find the point of intersection of π with the line ℓ given by $3 x+1=2-y=$

a.) First, the normal vector for the plane is calculated. This can be done quickly using the vector product.	$n=\left(\begin{array}{l} 2 \\ 3 \\ 1 \end{array}\right) \times\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right)=\left(\begin{array}{l} 3-0 \\ 1-2 \\ 0-3 \end{array}\right)=\left(\begin{array}{c} 3 \\ -1 \\ -3 \end{array}\right)$
Next, the unit normal vector $\widehat{\boldsymbol{n}}$, is found by dividing \boldsymbol{n} by $\|n\|$.	$\begin{aligned} & \|\boldsymbol{n}\|=\sqrt{9+1+9} \\ & \Rightarrow \widehat{\boldsymbol{n}}=\frac{1}{\sqrt{19}}\left(\begin{array}{c} 3 \\ -1 \\ -3 \end{array}\right) \end{aligned}$
A vector \boldsymbol{a} from π to the point is needed. The point at $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ is clearly on π so we can use this to find \boldsymbol{a}.	$\boldsymbol{a}=\left(\begin{array}{c} -1 \\ 2 \\ -5 \end{array}\right)-\left(\begin{array}{l} 1 \\ 1 \\ 2 \end{array}\right)=\left(\begin{array}{c} -2 \\ 1 \\ -7 \end{array}\right)$
Now projecting \boldsymbol{a} onto $\widehat{\boldsymbol{n}}$ gives the shortest distance from P to π.	$\begin{aligned} & \quad \boldsymbol{a} \cdot \hat{\boldsymbol{n}}=\frac{1}{\sqrt{19}}\left(\begin{array}{c} -2 \\ 1 \\ -7 \end{array}\right) \cdot\left(\begin{array}{c} 3 \\ -1 \\ -1 \end{array}\right) \\ & =\frac{1}{\sqrt{19}}(-6-1+21)=\frac{14}{\sqrt{19}} \end{aligned}$
b.) This part is most quickly solved with the cartesian equation for π and the vector equation for ℓ. Using \boldsymbol{n} and the point $\left(\begin{array}{l}5 \\ 4 \\ 5\end{array}\right)$, the cartesian equation for π is found.	$\begin{aligned} & \text { From } n, \pi=3 x-y-3 z+d=0 \text {, where } \\ & d=-r \cdot n \\ & \qquad \begin{array}{c} d=-\left(\begin{array}{c} 5 \\ 4 \\ 5 \end{array}\right) \cdot\left(\begin{array}{c} 3 \\ -1 \\ -3 \end{array}\right) \\ 3 x-y-3 z+4=0 \end{array} \end{aligned}$
The equation for ℓ is converted into vector form. Then the same method as in example 5 can be used.	$\begin{gathered} \sigma=3 x+1=2-y=\frac{z}{3} \\ \Rightarrow x=-\frac{1}{3}+\frac{\sigma}{3}, y=2-\sigma, z=3 \sigma \\ \Rightarrow r=\left(\begin{array}{c} -\frac{1}{3} \\ 2 \\ 0 \end{array}\right)+\sigma\left(\begin{array}{c} \frac{1}{3} \\ -1 \\ 3 \end{array}\right) \end{gathered}$
The expressions for x, y and z are substituted into the cartesian equation for π.	$\begin{gathered} 3\left(-\frac{1}{3}+\frac{\sigma}{3}\right)-(2-\sigma)-3 \sigma=-4 \\ \sigma=1 \end{gathered}$
This value is used in the vector equation for ℓ to give the point of intersection.	$r_{\text {intesection }}=\left(\begin{array}{c} -\frac{1}{3} \\ 2 \\ 0 \end{array}\right)-1\left(\begin{array}{c} \frac{1}{3} \\ -1 \\ 3 \end{array}\right)=\left(\begin{array}{c} -\frac{2}{3} \\ 3 \\ -3 \end{array}\right)$

This can be done quickly using the vector product.
Next, the unit normal vector \widehat{n}, is found by dividing n by $|n|$.

A vector \boldsymbol{a} from π to the point is needed. The point at
$\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ is clearly on π so we can use this to find \boldsymbol{a}.
Now projecting a onto \widehat{n} gives the shortest distance
b.) This part is most quickly solved with the cartesian the point $\left(\begin{array}{l}5 \\ 4 \\ 5\end{array}\right)$, the cartesian equation for π is found.

The equation for ℓ is converted into vector form. Then
the same method as in example 5 can be used.

The cartesian equation for π.
point of intersectio

$$
\begin{gathered}
n=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right) \times\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
3-0 \\
1-2 \\
0-3
\end{array}\right)=\left(\begin{array}{c}
3 \\
-1 \\
-3
\end{array}\right) \\
|\boldsymbol{n}|=\sqrt{9+1+9}
\end{gathered}
$$

$$
a=\left(\begin{array}{c}
-1 \\
2 \\
-
\end{array}\right)-\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
7
\end{array}\right)
$$

$$
\begin{aligned}
& \quad \boldsymbol{a} \cdot \hat{\boldsymbol{n}}=\frac{1}{\sqrt{19}}\left(\begin{array}{c}
-2 \\
1 \\
-7
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
-1 \\
-3
\end{array}\right) \\
& =\frac{1}{\sqrt{19}}(-6-1+21)=\frac{14}{\sqrt{19}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { From } n, \pi=3 x-y-3 z+d=0, \text { where } \\
& d=-r \cdot n \\
& d=-\left(\begin{array}{l}
5 \\
4 \\
5
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
-1 \\
-3
\end{array}\right) \\
& 3 x-y-3 z+4=0 \\
& \sigma=3 x+1=2-y=\frac{z}{3} \\
& \Rightarrow x=-\frac{1}{3}+\frac{\sigma}{3}, y=2-\sigma, z=3 \sigma \\
& \Rightarrow \boldsymbol{r}=\left(\begin{array}{c}
-\frac{1}{3} \\
2 \\
0
\end{array}\right)+\sigma\left(\begin{array}{c}
\frac{1}{3} \\
-1 \\
3
\end{array}\right)
\end{aligned}
$$

$$
3\left(-\frac{1}{3}+\frac{\sigma}{3}\right)-(2-\sigma)-3 \sigma=-4
$$

